organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Takashi Fujihara,* Miki Saito and Akira Nagasawa

Department of Chemistry, Faculty of Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan

Correspondence e-mail: fuji@chem.saitama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.066 wR factor = 0.183 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,N,N',N'-Tetrakis(2-pyridiniomethyl)-1,3-diaminopropane tetraperchlorate monohydrate

The cation of the title compound, $H_4tptn^{4+} \cdot 4ClO_4 - \cdot H_2O$, where H_4tptn^{4+} is N, N, N', N'-tetrakis(2-pyridiniomethyl)-1,3diaminopropane ($C_{27}H_{34}N_6^{4+}$), contains an intramolecular $N-H \cdot \cdot \cdot N$ hydrogen bond, and the average ring angle at the N atoms in the pyridinium rings is 123.6 (1)°. Intermolecular $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot O$ hydrogen bonds are also found in the crystal structure.

Comment

As a part of systematic investigations for the syntheses of a class of multidentate ligands, tetrakis(2-pyridylmethyl)-alkanediamines have been prepared *via* reductive amination reactions (Fujihara *et al.*, 2004). We report here the crystal structure of the title compound, H_4 tptn⁴⁺·4ClO₄⁻·H₂O, (I).

The molecular structure of (I) is shown in Fig. 1. Selected bond lengths and angles are given in Table 1. The average C– N–C bond angle of 123.6 (1)° in the protonated pyridine rings is similar to those of an analogous compound, H₄tpen^{4+.}4ClO₄⁻ [H₄tpen⁴⁺ = N,N,N',N'-tetrakis(2-pyridiniomethyl)-1,2-diaminomethane; *ca* 123°; Gunatilleke & Norman, 2003]. The pyridine rings (N3/C5–C9, N4/C11–C15, N5/C17– C21 and N6/C23–C27) are planar, the largest deviation from the plane being that of atom C21 [0.011 (2) Å].

There are intramolecular and intermolecular $N-H\cdots O$ and intermolecular $O-H\cdots O$ hydrogen bonds (Table 2). The N atoms of the propanediamine backbone form intramolecular hydrogen bonds with the pyridinium H atoms $[N1\cdots N3 =$ 2.737 (3) Å and $N2\cdots N5 = 2.659$ (3) Å]. The pyridinium N atoms (N3, N4 and N6) act as hydrogen-bond donors, forming intermolecular hydrogen bonds with water and perchlorate O atoms. Water atom O1 acts as a hydrogen-bond donor, forming intermolecular hydrogen bonds with perchlorate ions. These interactions play a role in the crystal packing (Fig. 2).

Experimental

To 1,2-dichloroethane (5 ml) in a flask were added 1,3-diaminopropane (0.39 g, 5.2 mmol) and 2-pyridinecarboxaldehyde (2.7 g, 25 mmol), and the mixture was stirred for 30 min at room temperature (293 K) under an argon atmosphere. A small amount of sodium Received 10 May 2004 Accepted 17 May 2004 Online 5 June 2004

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of (I), showing the intramolecular hydrogen bonds (dashed lines), with 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A molecular packing diagram of (I). H atoms bonded to C atoms have been omitted for clarity.

triacetoxyborohydride (4.4 g, 21 mmol) and CH2ClCH2Cl (15 ml) were added to the solution, which was stirred for 24 h at room temperature under an argon atmosphere, producing a yellow solution. After neutralization by the addition of saturated aqueous NaHCO₃ (25 ml) to give a weakly alkaline solution, the product was extracted with CHCl₃ (3 \times 20 ml), which was then dehydrated by adding anhydrous Na₂SO₄ (6 g). The crude product was purified by silica-gel column chromatography with a toluene-ethanol mixed eluant (16:1 v/v). A pale-yellow oily residue as a free tptn containing some toluene was available by the evaporation of the solvent under reduced pressure (yield: 1.38 g, 58%). Perchloric acid (60%) was added slowly to an aqueous solution of the free tptn until the pH became approximately 4. The crude product of (I) was obtained as a pale-yellow powder by adding ethanol to the acidic aqueous solution. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an aqueous solution.

Spectroscopic analysis for (I): ¹H NMR (D₂O, TSP_{int}): δ 8.67 (4H, *dd*), 8.47 (4H, *t*), 7.95 (4H, *d*), 7.90 (4H, *t*), 4.28 (8H, *s*), 2.70 (4H, *t*),

1.84 (2H, q). Elemental analysis found: C 37.81, H 4.24, N 9.76%; calculated for $C_{27}H_{36}Cl_4N_6O_{17}$: C 37.78, H 4.23, N 9.79%.

 $R_{\rm int} = 0.032$

 $\begin{array}{l} \theta_{\rm max} = 27.9^{\circ} \\ h = -15 \rightarrow 13 \end{array}$

 $k = -16 \rightarrow 15$ $l = -16 \rightarrow 16$

+ 2.858*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 1.25 \text{ e} \text{ Å}^{-3}$

NT

 $\Delta \rho_{\rm min} = -1.19 \text{ e } \text{\AA}^{-3}$

 $w = 1/[\sigma^2(F_o^2) + (0.0956P)^2]$

Extinction correction: SHELXTL-

Extinction coefficient: 0.0043 (10)

Crystal data

$C_{27}H_{34}N_6^{4+}\cdot 4ClO_4^{-}\cdot H_2O$	Z = 2
$M_r = 858.42$	$D_{\rm x} = 1.577 {\rm Mg} {\rm m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 11.6648 (6) Å	Cell parameters from 8505
p = 12.3882 (6) Å	reflections
r = 12.5333 (6) Å	$\theta = 2.4-27.9^{\circ}$
$\alpha = 92.168 \ (1)^{\circ}$	$\mu = 0.41 \text{ mm}^{-1}$
$\beta = 91.050 \ (1)^{\circ}$	T = 173 (2) K
$v = 92.252 (1)^{\circ}$	Block, colourless
$V = 1808.09 (15) \text{ Å}^3$	0.50 \times 0.40 \times 0.25 mm
Data collection	
Bruker SMART APEX CCD area-	8519 independent reflections
detector diffractometer	7487 reflections with $I > 2\sigma(I)$

detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.821, T_{\max} = 0.904$ 13 190 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.183$ S = 1.068519 reflections 512 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

N1-C4	1.461 (3)	C1-C2	1.526 (3)
N1-C10	1.463 (3)	C3-C2	1.522 (4)
N1-C1	1.480 (3)	N6-C27	1.341 (4)
N2-C16	1.459 (3)	N6-C23	1.354 (3)
N2-C22	1.469 (3)	N5-C17	1.334 (4)
N2-C3	1.477 (3)	N5-C21	1.348 (4)
N4-C15	1.341 (4)	N3-C5	1.336 (4)
N4-C11	1.341 (3)	N3-C9	1.344 (4)
C15-N4-C11	123.3 (3)	C17-N5-C21	124.0 (3)
C27-N6-C23	123.5 (2)	C5-N3-C9	123.7 (3)
C4 N1 C1 C2	68.0.(2)	N1 C10 C11 N4	121(2)
$C_{10} N_1 C_1 C_2$	57.5(3)	$N_{1} = C_{10} = C_{11} = N_{4}$	-42.1(3)
C10 - N1 - C1 - C2	-57.5(3)	$N_2 = C_{22} = C_{23} = N_0$	175.2(2)
C10=N2=C3=C2	-101.3(2)	$N_2 = C_3 = C_2 = C_1$	173.5 (2)
$C_{22} - N_2 - C_3 - C_2$	66.1 (3)	N1 - C1 - C2 - C3	-1/8.8(2)
N1-C4-C5-N3	20.6 (3)	N5-C17-C16-N2	13.3 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3-H3N····O11 ⁱ	0.88 (4)	2.00 (4)	2.845 (3)	160 (4)
N3-H3N···N1	0.88 (4)	2.38 (4)	2.737 (3)	105 (3)
$N4-H4N\cdotsO1^{i}$	0.87(4)	2.57 (4)	3.137 (3)	124 (3)
$N5-H5N\cdots N2$	0.78 (4)	2.23 (4)	2.659 (3)	115 (4)
N6-H6N···O1	0.90 (4)	1.93 (4)	2.810 (3)	165 (3)
O1−H102···O21	0.76 (4)	2.14 (4)	2.876 (3)	163 (4)
$O1-H101\cdots O33^{ii}$	0.77 (5)	2.41 (5)	3.088 (7)	147 (5)

Symmetry codes: (i) x, y, z - 1; (ii) 1 - x, 1 - y, 1 - z.

The water and pyridinium H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions, with C-H = 0.99 (for CH₂) or 0.95 Å (for the pyridine ring), and refined using a riding model, with $U_{\rm iso}({\rm H}) =$ $1.2U_{\rm eq}({\rm parent})$. The highest difference map peak was 0.54 Å from atom O34 and the deepest hole was 0.26 Å from atom O34.

Data collection: *SMART-W2K/NT* (Bruker, 2003); cell refinement: *SAINT-W2K/NT* (Bruker, 2003); data reduction: *SAINT-W2K/NT*; program(s) used to solve structure: *SHELXTL-NT* (Bruker, 2003); program(s) used to refine structure: *SHELXTL-NT*; molecular

graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXTL-NT*.

References

- Bruker (2003). SAINT-W2K/NT (Version 5.0), SMART-W2K/NT (Version 5.6) and SHELXTL-NT (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o262-o263.
- Gunatilleke, S. S. & Norman, R. E. (2003). Acta Cryst. E59, o269-o271.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.